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1. INTRODUCTION

The modeling of artillery-produced and high-explosive-produced dust clouds and
the resultant transmission of visible and infrared radiation through these
clouds can be divided into three phases. The first phase deals with cratering
and initial cloud properties and determines how much material is put into the
cloud. The second phase deals with transport and diffusion of the resulting
dust cloud and is important in determining the density of the dust cloud and
its position with respect to the transmission line of sight. The third phase
deals with the transmission of visible and infrared radiation through the dust
aerosol and depends upon the particle size distribution and the composition of
the material in the cloud.

In modeling the transmission through dust clouds, certain inputs to the, models
are desired, but these inputs may not always correspond to directly, measured
(or measurable) quantities. Table 1 shows some parameters which are commonly
used in modeling, either as inputs or internally carried values, along with a
comment about what quantity is actually measured. Uncertainties arise in
determining a best Value to be used because either the measurement itself
yields a large range of possible values and an interpolation is then required,
or the quantity cannot be readily measured and an "educated guess" must be
made.

The effect on the resultant transmission of the range of values of the model
input parameters shall be studied here. The standard for comparison shall be
the measured transmission through artillery-produced dust clouds. The desired
model output is the calculated transmittance at selected visible and Infrared
wavelengths. Selected inputs from each of the three phases of the dust cloud
transmission problem shall be varied to determine their effects on and
importance to the resultant transmittance.

2. SJLECTION OF TEST DATA AND MODEL PARAMETERS

The test data shall be taken from the Dusty Infrared Test - II (DIRT-II)
Program' conducted at White Sands Missile Range, NM, in July 1979. The test
series consisted of single explosions from tube-delivered (live fire)
artillery rounds, statically detonated artillery shells, and statically
detonated bare charges. From the many cases available, this report shall use
selected cases of 105-mm and 155-mm shells. The quantity used for comparison
shall be the transmittance through the artillery-produced dust clouds.,
Figures 1 and 2 are examples of the transmittance at visible and infrared
wavelengths versus time for statically detonated 105-mm and 155-mm shells.

1B. W. Kennedy, Editor, 1980, Dusty Infrared Test - II (DIRT-II) Program,
ASL-TR-0058, Atmospheric Sciences Laboratory, White Sands Missile Range, NM

1J. A. Curcio, K. M. Haught, and M. A. Waytko, 1980, "Transmittance
Measurement at DIRT-II," Chapter 6 in Dusty Infrared Test - II (DIRT-Il)
Program, ASL-TR-0058, (B. W. Kennedy, Editor), Atmospheric Sciences
Laboratory, White Sands Missile Range, NM
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TABLE 1. MODELING PARAMETERS

Need to Know What is Measured

Crater volume Apparent crater diameter(s) and depth
Mass lofted No direct measurements

- Cloud and dust skirt (debris measurements - indirect)

Energy partitioned No direct measurements
(to initial cloud) (cloud rise rates - indirect)

Pasquill category Estimated from solar insolation,
cloud cover, and windspeed

Windspeed and wind direction Windspeed and wind direction
(often at different location)

Particle size distribution Particle size groups (sand/silt/clay)
(in the cloud) Sieve and hydrometer sizing (soil)

Impactor sampling (cloud)
Real-time in-situ sampling (cloud)

The dust cloud transmission model used is one being developed under the
auspices of the US Army Atmospheric Sciences Laboratory. 3 " I While this
specific model can neither (and need not) represent all the various inputs
required by different models nor identically parallel all algorithms and
methods of solution used, it is a reasonable representation of the state of
the art in dust cloud obscuration modeling.' The main objective is to

-J. H. Thompson, 1979, Models for Munitions Dust Clouds, ASL-CR-79-0005-2,
Atmospheric Sciences Laboratory, White Sands Missile Range, NM

'*J. H. Thompson, 1980, ASL-DUST: A Tactical Battlefield Dust Cloud and
Propagation Code, Volume 1 - Model Formulations, ASL-CR-80-0143-1, Atmospheric
Sciences Laboratory, White Sands Missile Range, NM

5J. H. Thompson, 1980, ASL-DUST: A Tactical Battlefield Dust Cloud and
Propagation Code, Volume 2 - User's Manual, ASL-CR-80-0143-2, Atmospheric
Sciences Laboratory, White Sands Missile Range, NM

'M. G. Heaps, 1980, "Evaluation of Cratering Parameter on Transmission Through
Artillery Produced Dust Clouds (U)," Proceedings of the Smoke/Obscurants
SyMvosium IV, Volume 2, DRCPM-SMK-T-O01-80, CONFIDENTIAL, Harry Diamond
Laboratories, Adelphi, MD

IM. G. Heaps, 1980, "The Effect of Meteorological Parameters on Artillery
Produced Dust Cloud Size, Growth, and Transport (U)," Proceedings of the
Smoke/Obscurants Smposium IV, Volume 2, DRCPM-SMK-T-OOU, 7CON-ID!rrAh,--
Harry Diamond Laboratories, Adelphi, MD
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select a representative subset of potential input parameters and determine the
sensitivity of the modeled transmittance to their variation.

The first phase of dust cloud modeling deals with cratering and the properties
of the initial (that is, essentially instantaneous) cloud. Several scaling
laws have been developed which relate the apparent crater volume to the
explosive charge type and positioning. Typical variations of actual crater
volumes about the mean predicted crater volume are +30 percent, that is,
approximately a factor of two variation between the smialler and large crater
volumes for a given soil type.

Next one must determine how much of the actual crater volume becomes airborre
in the dust cloud, as opposed to being distributed as crater ejecta about the
rim. Current estimates are that 25 percent of the apparent crater volume
actually enters the cloud, but there is certainly another factor of two
variation inherent here. The basic quantity whicb--heeds to be specified is
how much material is actually in the cloud, and this quantity is a function of
the apparent crater volume, the fraction which enters the cloud, and the soil
type. The basic parameter used here shall be called the lofted crater mass
(Lcm), which shall be used as a multiplicative factor relatinq the amount of

soil lofted to the explosive charge weight,

M(kg) = 0.25 p LcmW (1)

where M is the amount lofted (kilograms), p is the soil density (kilograms per
cubic meter), and W is the explosive charge (in pounds of TNT). Lcm has a

median value of 0.03 for artillery shells, but can vary between 0.01 and
0.075.

The initial (that is, "instantaneous") size of an artillery dust cloud is
usually scaled to an equivalent radius, determrined from shock wave theory,
which is approximately the radius of a sphere whose size is determined by the
amount of explosive energy available to do work expanding the cloud against
atmospheric pressure. For artillery shells, this equivalent radius is on the
order of 2 to 3 m. The initial cloud is often not spherical, particularly fcr
cased and shaped charges, and thus an ellipsoid may be chosen for the initial
cloud shape. However, the subsequent growth and diffusion of the cloud begins
to obscure the effects of any initial shape within a few seconds. Thus, the
effects of incorrectly scaling the initial cloud shape are felt to be less
important than the possible variation in the parameter governing the Lcm, and

these effects would be most noticeable only in the early period of dust cloud
growth.

Visual examination of high-explosive" and artillery-produced dust clouds shows
that a nonbuoyant base cloud or dust skirt accompanies the formation of the
buoyantly rising main dust cloud. For modeling purposes this initial base
cloud is given three times the horizontal dimensions and the same vertical
extent as the initial main dust cloud. The airborne mass of the base cloud or
dust skirt is taken to be 10 percent that of the main cloud. The subsequent

10



diffusion and transport of the base cloud or dust skirt are taken to be
independent of the main cloud, though governed by the same physics and
meteorology. The base cloud is taken to be "cold" and therefore has no
subsequent vertical rise other than by diffusion. Because most lines of sight
for electro-optical sensors are near the ground, the base cloud or dust skirt
plays a large role in the resultant dust cloud obscuration effects. Because
the base cloud is initially scaled to the main cloud, the potential errors and
variation of parameters inherent in the formulation of the main cloud are also
present for the base cloud.

Therefore, the variations possible in the first phase of dust cloud modeling,
which governs cratering and initial cloud properties, center primarily in the
areas of determining the amount of actual materia', in the cloud, defining the
shapes of the initial base and main cloud, and determining the airborne mass
of the base cloud or dust skirt. The largest uncertainty is in the parameter
Lcm, which scales the amount of material in the dust cloud as a function of

soil type. This parameter shall be varied to represent the largest range of
uncertainties present in the first phase.

The second phase of dust cloud modeling '-cls with transport and diffusion, is
influenced heavily by meteorological parameters, and determines the
distribution and position of the cloud with respect to the optical line of
sight. Four parameters influence this phase of the modeling problem. The
first, the energy partitioned E., represents that fraction of energy of the

initial explosion which is available for the rise and expansion of the mair.
cloud. Current estimates place the value of Ep at 25 to 30 percent, but there

is certainly a factor of two variability, depending on explosive charge type,
placement, and soil characteristics.

The next three parameters express the dependence of this phase of dust cloud
modeling on meteorological quantities. The Pasquill category represents a
quantification of atmospheric stability in six discrete steps from very
unstable to very stable (the conventional Pasquill categories A through F).
This parameter is estimated from meteorological observations of windspeed,
cloud cover, and solar insolation. Its use within the model is to select sets
of values to be used in the diffusion of the base cloud and of the main cloud
after its buoyant rise and expansion phase. The final two parameoters are the
windspeed and wind direction. These can be measured directly (though usually
not precisely where the cloud is at any given moment) and used as inputs to
the dust cloud model. In practice these parameters are usually held constant
or averaged over periods of I or 2 minutes, which are the normal lifetimes of
single artillery dust clouds.

The third phase of dust cloud modeling deals with the transmission of
radiation through the dust cloud and depends primarily upon the composition
and particle size distribution of the cloud. The ro~mlosition of the soil and
its optical properties (that is, wavelength dependent indices of refraction)
can be determined to some degree from soil samples. In addition, the current
model allows that 30 percent of' the explosive charge by weight produce
micrometer sized carbon particles which are evenly distributed throughout the
cloud. An actual determination of the cloud's particle size distribution h3s
proved to be a difficult problem. Attempts have been made to measure the

11



particle size distribution "in-situ" at various tests,' ' o but results are
not yet felt to be reliable or representative. Soil samples and soil sieving
techniques can give a reasonable representation of the gross particle size
distribution of the soil in its natural state, but whether the explosion
itself preserves this "natural size" distribution is unclear. To be able to
adequately model a wide range of soil types, the current model uses an easily
and commonly measured parameter which is the percentage composition of the
soil as sand, silt, and clay. Sand represents particles of size 50um to
2000um, silt represents particles of size 2pm to 50um, and clay represents
particles of size < 2um. Representative particle size distributions and
indices of refraction are assigned to each group. The composition of the
initial cloud is then related directly to the soil composition, with an added
small component of carbon. Subsequent settling of the large size particles as
time progresses will then cause a change in the relative composition of the
cloud and also in its optical properties.

Table 2 lists the parameters to be varied in subsequent simulations of test
data. Where it is applicable, the average value of the parameter and its
range are also given.

3. COMPARISON OF MODELED VARIATION WITH TEST DATA

The test data shown in figures 1 and 2 illustrate two points which should be
noted. First, the rather jagged or stochastic nature of the actual
transmission data is due to turbulence and the many small inhomogenelties
actually present within the cloud; often large eddies are present which give
brief "transmission holes" in the dust cloud. It is beyond the state of
current computer codes to model anything but a continuum approach to the
effects of turbulence and therefore simulated transmission data appear as
smooth curves. Second, the actual data often show larger transmittances at
infrared than at visible wavelengths, as figures 1 and 2 demonstrate. This
particular feature, while frequently observed, is by no means consistently
present even within a test series.

1B. W. Kennedy, Editor, 1980, Dust Infrared Test - II (DIRT-II) Program,
ASL-TR-0058, Atmospheric Sciences Laboratory, White Sands Missile Range, NM

'G. Fernandez and R. G. Pinnick, 1980, "Particle Size Measurements," Chapter 8
in Dusty Infrared Test - II (DIRT II) Program, ASL-TR.-0058, (B. W. Kennedy,
Editor), Atmospheric Sciences Laboratory, White Sands Missile Range, NM

'J. Mason, 1980, "Site Characterization for the MBCE/DIRT-II Battlefield
Environment Tests," Chapter 9 in Dusty Infrared Test - II (DIRT-II) Program,
ASL-TR-0058, (B. W. Kennedy, Editor), Atmospheric Sciences Laboratory, White
Sands Missile Range, NM

"11J. D. Lindberg, Compiler, 1979, Measured Effects of Battlefield Dust and
Smoke on Visible, Infrared, and -Millimeter Wavelength Propagation: A
Preliminary Report on Dusty Infrared Test - I (DIRT-I), ASL-TR-O021,
Atmospheric Sciences Laboratory, White Sands Missile Range, NM
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TABLE 2. VARIABLE PARAMETERS

Parameter Vdlue Used

Crater mass lofted (Lcm) (relates the rcm = 0.06 - 0.075

amount of material lofted to the size of range: 0.01 to 0.075

the explosive charge; a function of charge

type, placement, and soil type).

Energy partitioned (Ep) (a measure of 'Ep = 0.25

the fraction of explosive energy available range: 0.125 to 0.5

for rise and expansion of the main cloud;

a function of charge type, placement, and

soil type).

Pasquill category (a quantification of A - F

atmospheric stability affecting the (value estimated from

diffusion of the cloud), meteorological obser-

vations)

range: + one category

Windspeed Measured (average) value

range: +0.5 to 1 m/s

Wind direction Measured (average) value

range: +100

Particle size distribution (present Based on percentage composition

dist'ibution for different soil corn- of sand, silt, and clay in the

ponents are used). soil.

range: +10 to 20 percent of

measured values

13



Two test cases, already shown in figures I and 2, have been chosen to
illustrate the variation one might expect between actual and simulated
transmission data when the input quantities to th.ý model are changed. The
first case is for a 105-mm shell detonated a reasorable distance from the line
of sight. The detonation cloud was carried across the line of sight at a
somewhat oblique angle. The second case is for a larger 155-mm shell
detonated closer to the line of sight. The detonation cloud was carried
almost parallel to, but slightly away from, the line of sight. Table 3 gives
the basic input data for each case.

Figures 3 through 6 show the simulated transmittances for 105-mm (trial B-7)
and 155-mm (trial A-11) explosions. The visible (0.55um) and infrared
(10.37vm) transmittances are shown separately. The parameter which has been
varied is the Lcm. The larger values were taken from the averaged crater

sizes for all statically detonated 105-mm and 155-mm shells, respectively.
The smaller values of Lcm were chosen as a lower limit for the types of desert

soils present in the DIRT series. As might be expected, the measured Lcm for

the respective sets of trials give the better representation of the measured
transmi ttances.

Figures 3 and 4 show that the early time modeled transmittances do not drop
off as rapidly as the test data would indicate. Examination of numerous cases
of similarly placed charges (that is, more than 10 m from the line of sight,
such that the cloud is not initially in the line of sight) shows a similar
trend. The indication is that the size and expansion of the base cloud o'
dust skirt are not correctly modeled for the first few seconds of the dust
cloud's lifetime. In contrast, for dust clouds which are very close to the
line of sight, similar to those plotted in figures 5 and 6 and other cases
which were examined, the modeled transmittances dropped off more rapidly than
the measured ones. The indication here is that the transmissometer may not
have responded accurately during the initial seconds of rapid transmission
decrease. Thus, comparisons between simulated and measured data for initial
times less than approximately 10 seconds may not always be valid.

Figures 3 through 6 show that the larger values for the Lcm factor provide the

better simulation of the transmission data. Because the main cloud eventually
rises several tens of meters above the surface, while the base cloud stays
within several meters of the surface, the main cloud moves out ahead of the
base cloud or dust skirt due to the normal wind shears present in the
atmospheric boundary layer. Thus for trials such as B-7, shown in figures 3
and 4, where the cloud is blown across the line of sight, the obscuration at
later times is due primarily to the base cloud; the main cloud is above and
beyond the line of sight at these later times. In trial A-11 (figures 5 and
6) the bulk of the obscuration at earlier times is caused by the main cloud
because the track of the two clouds so closely parallels the line of sight.
The main cloud, while above the line of sight, is still expanding down into
it; after about 40 seconds the base cloud also begins to diffuse up into the
line of sight and causes the majority of the obscuration after this time. The
decline in the rate of improving transmittance seen in figures 5 and 6 after
60 seconds is due to the continued diffusion of base cloud up into the line of
sight, while the larger particles (>80rm) of the main cloud are beginning to
settle down into the line of sight.

14



TABLE 3. INPUT DATA FOR TEST CASES

Parameters B-7 (105 mm) A-11 (155 mm)

Distance from line of sight 19.5 m east 10.4 m west

Height of line of sight 7.5 m 7.5 m
above detonation point

Estimated Pasquill category B B

Windspeed 2.4 m/s 3.7 m/s

Wind direction 1650 36*

Angle of wind wrt line of sight 41* (across) 100 (away)

Soil type Silty clay with varying amounts of sand;
composition taken as 25 percent sand,
50 percent silt, 25 percent clay

Indices of refraction x = 0.55,m x - 10.37,m

Clay 1.52 - 0.00071 2.16 - 0.1491

Silt 1.55 - 0.00011 2.35 - 0.03151

Sand 1.55 - 0.00011 2.35 - 0.03151

Carbon 1.75 - 0.441 2.22 - 0.7261

Type of explosive charge Statically detonated artillery shell
placed with nose tip on the ground at
an angle of about 11* with the surface

15



ASL-OUST - SENSITIVITY TO INPUTS
1.2-- r --- T - ---

OIRT-I1 TRIAL 6-7
1. 1 105 MM STATIC - SURFACE

0. 55 MICROMETERS

w.7
Z .8g ,

6

iI - --- MODEL .- 08e CRATER
z ,.. SCALING BASED ON
< 4ý MEASURED VOLUME

-- / MODEL - .01S CRATER
3 SCALING. DRY. SANDY
[ SOIL LIMIT.

2-,/ - -TRANSMISSOMETER

I DATA

0 20 40 60 80 100 120
TI ME (SEC)

FIGURE 3. DIRT II TRIAL 8-7 CRATER SCALING.

Vor-I=+tior," I =rt, =+.r O"t r ol it, Footo-r-.

ASL-DUST - SENSITIVITY TO INPUTS

DIRT-I1 TRIAL 8-71. 1 105 MM STATIC - SURFACE

10. 37 MICROMETERS -

W g - - A
u1

Z .8 \

V IJ/ 2
W 5/ ---- MODEL- .08 CRATER

4 '/ AJSCALING BASED ON
MEASURED VOLUME

S '/ -- MODEL - .010 CRATER

i.3 -J SCALTNG. DRY. SANDY
SOIL LIMIT.

.2 -- TRANSMISSOMETER
DATA• 1

0II I t I

0 20 40 60 80 100 120
TIME (SEC)

FIGURE 4. DIRT II TRIAL B-7 CRATER SCALING.
Var-i atjoto i t, orote- oo~l i t

16



ASL-DUST - SENSITIVITY TO INPUTS

DIRT-I1 TRIAL All - - MOOEL - .073 CRATER
1 155 MM STATIC - SURFACE SCALING BASED ON

1 0. 55 MICROMETERS MEASURED VOLUME
MODEL - .015 CRATER

W g SCALING. DRY. SANDY
u SOIL LIMIT.

F- -- TRANSMISSOMETERS6 -4 DATA
'- .6-

z
< .4

.2

0
0 20 40 60 80 100 120

TIME (SEC)
FIGURE 5. DIRT II TRIAL All CRATER SCALING.

Vo~rii=1o1, in omrP or oc*=lirqg f'=otor.

ASL-OUST - SENSITIVITY TO INPUTS
1.2

DIRT-I1 TRIAL All MODEL - .073 CRATER
1. 1 155 MM STATIC - SURFACE SCALING BASED ON

10.37 MICROMETERS MEASURED VOLUME
-- MODEL - .015 CRATER

W gSCALING. DRY. SANDY

u .- SOIL LIMIT.

Z -8 -- TRANSMISSOMETER< \ DATA...
I- .7 ' --

(nl.z -""

0--

0 20 40 60 80 100 120

TIME (SEC)
FIGURE S. DIRT II TRIAL All CRATER SCALING.

Variatio-, irn cr.oozer*ol in f-ac.

17



m • • • • • • . . - . .

Figures 7 through 10 show the effect of varying the energy partitioned
fraction, E The figures show that as the Ep fraction increases the

simulated transmittances are decreased during the main portion of the recovery
phase. This increase-decrease phenomenon is due to two reasons: (1) The
initial size of the main cloud, and hence the base cloud or dust skirt, is
scaled to the amount of energy "available" to the cloud from the explosion.
Thus for larger values of Ep the initial base and main clouds are larger and

extend into the line of sight to a greater extent. (2) Although the main
cloud is rising at a somewhat more rapid rate, it is also expanding at a more
rapid rate such that the amount of material in the line of sight due to the
main cloud is slightly increasing. Only at later times, after the cloud has
moved through and away from the line of sight, does the effect of a larger,
more diffuse cloud finally dominate; and the larger values of Ep begin to show
a slightly larger transmittance.

Figures 11 through 14 show the effect of varying the Pasquill category. This
parameter is varied in a step-like manner, and the range of simu-ated
transmittances shows the importance of making an initially reasonable
estimate. The Pasquill parameter primarily controls the diffusion of the base
cloud and, after the rise and expansion phase, of the main cloud. The effect
of changing the Pasquill category to more unstable conditions is to increase
the rate of diffusion of the cloud which, for the cases illustrated, causes
more material to be diffused into the line of sight. Thus changing the
Pasquill category from B-A decreases the simulated transmittance. Figures 12
and 14 indicate that for infrared transmission a change in the Pasquill
category to a more unstable value at later times gives a somewhat better fit
to the data, which may indicate that the transport and diffusion of the larger
particles in the late-time cloud have been initially underestimated.

Figures 15 through 18 show the effect of varying the windspeed. The general
effects are small, particularly when the cloud tends to parallel the line of
sight, as in figures 17 and 18. When the wind is more of a crosswind to the
line of sight, the entire profiles just slide over a few seconds in time,
which is what one would expect. Of course the two profiles are not absolutely
identical due to small differences in the respective speeds of the main and
base clouds.

Figures 19 through 22 illustrate the effects of changing the wind direction.
The differences are larger here for slight changes in wind direction than they
were for the previous changes in windspeed. For trial A-11 (figures 21 and
22), where the cloud path nearly parallels the line of sight, a slight change
in direction causes a very large change in the simulated transmittances. In
this instance the simulated cloud path is only 5° from the line of sight; for
the earlier part of the infrared transmission profile in figure 22, this
altered wind direction gives a better fit to the data, though this does not
seem to be the case for the visible transmission profile in figure 21. Again
this may be an indication that the transport and diffusion of the various
particle size groups are not being optimally modeled. In reality, the wind
direction and windspeed do vary slightly on time scales of a few seconds;
these factors are two causes of the stochastic nature of the actual
transmission data.

18



"....................---vailable Copy

ASL-DUST - SENSITIVITY TO INPUTS
1.2

OIRT-II TRIAL B-7
1. 105 MM STATIC - SURFACE

0.55 MICROMETERS

WI1 • --7.r.... -

Z .8 " -

< I_- I,H• 57 lljl / ..•<

S4 . 6 , , "'

S/ ." MODEL - HYDRO-YIELD
"'- ."�FRACTION./

H."3\ -- TRANSMISSOMETER

.2 DATA

0 20 40 60 830 100 120
TIME (SEC)

FIGURE 7. DIRT II TRIAL 8-7 HYORO-YIELO FACTOR.
Vor-iotion i- kydrody-mio r-ey frct•lor.

ASL-OUST - SENSITIVITY TO INPUTS
1.2

1. 1 DIRT-I TRIAL 8-7
105 MM STATIC - SURFACE

1 10 37 MICROMETERS

Z 8 -, /< , /
H.7 e1
-4.6"

( 5 5- MODEL - HYORO-YIELD

z FRACTION

< 0.250
F- 3 0.500-- TRANSMISSOMETER

.2 . DATA

.1

0 20 40 60 80 100 120

TIME (SEC)
FIGURE 8. DIRT II TRIAL B-7 HYDRO-YIELD FACTOR.

Vori-tiot c in kydrody-m1o i mr.yfr lotior3.

19



-tAvailable Cos

ASL-OUST - SENSITIVITY TO INPUTS1.2, # 1

1DIRT-lI TRIAL All
1. 1 155 MM STATIC - SURFACE MODEL - HYORO-YIELO

1 0.55 MICROMETERS FRACTION
---- 0.1250

w 9 0.2500

Z .e - TRANSMISSOMETER
< IDATA

-.71

< .4 - " - "'

02 \ - . .. ......

0 20 40 60 80 100 120
TIME (SEC)

FIGURE 9. DIRT II TRIAL All HYDRO-YIELD FACTOR.
V c=r-.iont- ir< hydr'o-d3romic3 Qre y f,'rnio,.

ASL-DUST - SENSITIVITY TO INPUTS1. - -2------- i I I I
1. 1 DIRT-HT TRIAL All

155 MM STATIC - SURFACE MODEL - HYDRO-YIELD
10.l37 MICROMETERS FRACTION 4

---- 0.125

Ld C30.250
S " ........ ......... 0.500

-- .e -- TRANSMISSOMETER
< DATA- .--------

E--• - - ---- --- -

U) . --

< 4

.2H- .

• 1 ''" . . ' x,/A
-.......

0 20 40 60 80 100 120
TIME (SEC)

FIGURE 10. DIRT II TRIAL All HYDRO-YIELD FACTOR.
Vor~itiorio in hy.do-dyrmio *Q," 9  Fr'a=o2io,0.

20



ASL-OUST - SENSITIVITY TO INPUTS1 2 r- - - -r • --v- ---- - --- -. . - - r+ , - - - "
11 DIRT-1I TRIAL B-7

105 MM STATIC - SURFACE
0. 55 MICROMETERS-------------------------------------------

w *g F /, " , - J•- ^JAJ W
u •- •'t/ , - ,• -\ , • '..

Z 86 ........-.

1 . '"

< 4ý4
< '/ ." PASQUILL CATEGORY

S" .........
r-- '-II . S

I, ', / / ""-- - - TRANSMISSOMETER

'��D ATA

0
0 20 40 60 80 100 120

TiME (SEC)
FIGURE 11. DIRT I1 TRIAL B-7 PASQUILL CATEGORY.

Vcnr- Io-1-i or- ovar- Paoq,-j1ii tl1i> oa oi.

ASL-DUST - SENiSITrVITY TO INPUTS

1. [ PIRT-Il TRIAL 9-7
105 MM STATIC - SURFACE

l0. 37 MICROMETERS - -.. . .

S--Li. g "4 / -- /\,

uz< .8 A !!. / ..l•/

7. /,

H ' / }/)\
'-9 .5 / i , "

Z] . PASCUILL CATEGORY< . 4 " /......... A

H- %\,\/. ." C
TRANSMISSOMETER

.2 D* . .ATA

0I | , i ... . ..* I * I

0 20 40 60 80 100 120
TIME (SEC)

FIGURE 12. OIRT II TRIAL B-7 PASQUILL CATEGORY.
VoriatIor, ovft- PomcuL i1 Stobil ity C~ti-aritew.

21



-- -- -*• -. , --.--- --

(~py

ASL-OUST - SENSITIVITY TO INPUTS

DIRT-II TRIAL All PASQUILL CATEGORY
1. 1 155 MM STATIC - SURFACE ....... A

1 0.55 MICROMETERS ----

C
W TRANSMSISSOMETER

u DATA

Z.7

ASL-OST -- SENSIIVIT T -NPUTS

- .1 -

1 -42 : 1 1

7 ° v

< .48i;' / -'

....... / ... 
...... . . . . . ... ..

- 'V7 / --- ....

7 ........ .• •..
0 20 40 60 80 100 120

TIME (SEC)
FIGURE 13. DIRT II TRIAL All PASQUILL CATEGORY.

Vor i =4- on Pomq9 j111 St-o6bi1ttiX Cot 9 0 oi-m.

ASL-UST -SENSITIVITY TO INPUTS
1. 2 1 - III

DIRT-Il TRIAL All PASQUILL CATEGORY

1 1 155 MM STATIC - SURFACE ..... A

10.37 MICROMETERS ---

wg TRANSMISSOMETER

Z e.

< 7

0 4

0 20 40 60 80 100 120
TIME (SEC)

FIGURE 14. DIRT II TRIAL All PASOUILL CATEGORY.
Va- a, n vr- Poaqw~i 11 Stobli ty Cctgr± m

22



Best Ava2able Copy

ASL-OUST - SENSITIVITY TO INPUTS
1.2 ' •-.... -- '

DIRT-II TRIAL 8-7
1. 1 105 MM STATIC - SURFACE

1 0.55 MICROMETERS -

<
Z K ''/

< 'I 4

I,,,, WIND DIRECTION

3/ 1/5 DECREES A

AT 1.9 M/S
S/ --- TRANSMISSOMETER

- DATA

\\,~ ,\ jj - - I , i I
0 20 40 60 80 100 120

TIME (SEC)
FIGURE 15. DIRT II TRIAL 8-7 WINDS

Var-ic~ti~tn irn wli-wcdpftdb wilth =cptnm+torn+drmt-r

ASL-DUST - SENSITIVITY TO INPUTS
1.2 1 1 1 1

DIRT-II TRTAL B-7
105 MM STATIC - SURFACE

1 __•10. 37 MICROMETERS - --

UJ 9

.7 A
< -4"I-F •5 /•

A ,'~WIND DIRECTION
S, 1,5 DECREES

---- AT 2.4 M.S
2- j AT 1. 9 M/S

TRANSMISSOMETER
DATA

[] , I ,, I, 1 J I * I

020 40 60 80 10e 120
TIME (SEC)

FICURE 16. DIRT II TRIAL B-7 WINOS

23



Best Available C y

ASL-DUST - SENSITIVITY TO INPUTS
1 . 2 r- -- r--,- I I I
1. 1 DIRT-II TRIAL All

A 155 MM STATIC - SURFACE WINO DIRECTION
0.55 MICROMETERS 36 DEGREES

--- AT 9. 7 M/S

W CU AT 3.2 M/S
U " TRANSMISSOMETER
7 . DATA

7'-4 .7

U)
< 4-

F--

H ./" v'3

.2--

0 20 40 60 80 i10 120

T I E (SEC)
FIGURE 17. DIRT Ii TRIAL All WINDS

Vomr-Ic~tilot In- wIn~d.Fmad wiltH r.tr drejr,

ASL-DUST - SEN, SITITV ITY TO I NPUTS
-.1...................

OIRT-Il TRIAL All
15- MM STATIC - •URFACE WTNc, OIRECTTON

1.• MICROMETER3 ?6 IJECREEF
AT 3.7 M/7,

W o, AT 3.2 M/S
"u \ -- TRANSMISSOMETER

e. DATAH 7- nr^~~

7I--

) .5 '\ J\/\ "j/•j

Z \A,,

//

.2

0 20 40/ s0 80 107 2

TIME (SEC)
FIGURE 18. DIRT II TRIAL All WINOS

24



ASL-DUST -SEtNSITIVITY TO INPIUTS
1.2 - 1 1 1

DR-ITRIAL 8-7

1.01 MM STATIC - SURFACE
055 MICROMETERS

71-

I. IJ

< 
-4

'3 -- -- AT 185. DEC.

.3~\ ~ ,.~' 7AT 175. D~EC.

~-\~~--'TkAN=-MTSSOMFTEk

020 40 6'0 e 0 10o 11210
TIME (F

FIr I U RE 1 .. CoTRT Tt T TRTAL &-7 WTN;C! DjIRECTION
Ve { atl-z I -i wli :oI ý-d . tr. - a~- t _ . t ri ir d p

ASL -D!J.P3T - 'GEN17:T 1V 1TY TIO 1NPUT23
1. 2----- ------ ------------- . -~-*--~ r-

1. t CtikT-TT TRITAL 6-7
105 MM tTATTC -

10. 17 MT4YOM'ST'~k 7-

A V%

U) Z

< 4 All WNU2S.;PEE 2. 4 M/S

V AT 165. CEO
-A AT 1713. CEC0.

- TRANSMtSSOMETER

0 20 40 60 80 100 120
TIMEE (SEC)

FIGURE 20. DIRT IT TRIAL B-7 WIND DIRECTION

Variatar~itw~vd Ireetf-lov, at, oonattornlt wirdmclpftfd

25 Best Avallable Copy- Y



Best Available Copy

ASL-OUST - SENSITIVITY TO INPUTS
1.2

1. 1 DIRT-1I TRIAL All
155 MM STATIC - SURFACE WINOSPEED 3. 7 M/S

1 0.55 MICROMETERS AT 38. DEC.
AT 31. DEC.

TRANSMISSOMETER

U DATA
Z .8

-. 71

< .4

:3

.2-

0 2 40 6 80 100 120
TIME (S=C)

FIGURE 21. DIRT II TRIAL All WIND DIRECTION.

Vor+lor ir wiradi r'otio+r with oOcr1wt.=o" mp..ed.

ASL-_ UST -SENSITIVITY TO INPUTS
1. 2 -- - I I -

DIRT-Il TRIAL All
. 1 5 MM STATIC - SURFACE WINOSPEED 3.7 M/S

1 10.37 MICROMETERS ---- AT 36. DEC.
AT 31. DEC.

i c -- - TRANSMISSOMETER
u DATA

Z t

z

<.4 I L.-

.2 \

0 20 40 60 80 100 120

TIME (SEC)
FIGURE 22. DIRT II TRIAL All WIND DIRECTION.

Vorm±ltiot, imin winmd Jdjrozior, with oorletct *pQ.d

26



Figures 23 and 26 show the changes in simulated t-ansmittance for a change in
soil composition, and hence particle size distribution. The best initial
estimate for the soils of the DIRT-II series was a composition of 25 percent
clay, 50 percent silt, and 25 percent sand. To define a soil with a particle
size distribution weighted toward larger sizes, a composition of 8 percent
clay, 12 percent silt, and 80 percent sand was selected. Figures 23 through
26 show generally higher simulated transmittances for this second soil
composition. This difference is to be expected because the larger sizes tend
to give an overall smaller cross section to mass ratio. Also the ratio of
visible to infrared transmittances is larger for the second soil
composition. Again this is to be expected because the smaller proportion of
clay-sized particles (mean diameter O.5um) causes relatively less extinction
in the visible range.

4. DISCUSSION AND CONCLUSIONS

The first phase of dust cloud modeling governs the cratering and initial cloud
properties. The largest uncertainty lies in the correct determination of the
actual amount of crater material which is lofted and remains airborne. Of
secondary importance are the shape and size of the initial buoyant cloud and
nonbuoyant dust skirt. Using the Lcm as the variable, comparisons with test

data showed that the larger values of Lcm gave the better fits mainly because
a cased artillery shell gives a larger crater than an equivalent bare charge
for a given placement and soil type.

The second phase of dust cloud modeling deals with transport and diffusion.
Four parameters were varied here. The first, the explosive energy partitioned
to the initial cloud, Ep. influences the initial size of the main cloud, and

hence the base cloud which is scaled to the main cloud, and the rise and
expansion of the main cloud during its buoyant period. Increasing Ep tends to

reduce the calculated transmittance during the early recovery phase because
the larger base cloud and more rapidly expanding main cloud usually place more
mass into the transmissometer line of sight. The second parameter PS, the

Pasquill category, is a quantification of atmospheric stability. Allowing the
Pasquill parameter to assume hiaher values, that is, to represent a more
unstable or turbulent atmosphere, is similar in its effect to increasing the
previous parameter E P. Higher values of Ps tend to cause lower simulated

values of transmittance because more of the cloud is able to diffuse into the
line of sight. P. is varied in discrete steps, while nature varies in a
continuous manner; therefore, a certain amount of care should be taken in
correctly estimating a value of Ps to be used for modeling. The third

parameter, the windspeed, directly affects the transport of the cloud. But
its variation within a reasonable range was shown to have a small effect,
particularly when the cloud's path was more or less parallel to the line of
sight. The fourth parameter, the wind direction, also affects the transport
of the cloud. However, small variations of the wind direction were found to
produce large changes in simulated transmittances, in this case particularly
when the cloud path was along the line of sight. Therefore, of the four
parameters in the transport and diffusion phase of dust cloud modeling, Ep and
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PS were found to have similar effects, the windspeed was found to be of lesser

importance, and the wind direction was of major importance.

The third phase of dust cloud modeling deals with transmission through the
cloud. The important quantities here are the particle size distribution and
the indices of refraction. The particle size was chosen as the parameter to
be varied. The best approach has been to divide the soil up into component
parts, such as sand, silt, and clay, which can be determined from soil
analysis, and then assign a particle size distribution and set of refractive
indices to each component. These sets of size distributions are then taken to
be present in the initial cloud in the same proportion as in the soil. The
variation of the soil components can then change the relative transmittances
of visible and infrared wavelengths.

Thus, all three phases of modeling of dust clouds from artillery explosions
are sensitive to model parameters which cannot always be specified with high
precision. The magnitudes of the changes in transmission produced by
reasonable changes or uncertainties are comparable in several of these model
parameters. Areas have been identified in which further model development is
necessary. These areas include the early dynamic phase of base cloud and main
cloud formation, variations in meteorological parameters over the time scale
considered along with the large-scale turbulence, and the time dependent
particle size distribution within the cloud.
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